dimanche 4 janvier 2009

علم الفلك


1. إلى من يتوجّه هذا الدّرس:
هذا الدّرس موجّه إلى كلّ من يطمح في الحصول على قاعدة جيّدة في علم الفلك من الهوّاة أو الطّلبة أو غيرهم. لاستيعابه لا يحتاج القارئ أن يكون ذا مستوى أعلى من الثّانوي. فالمبادئ لا تتطلّب سوى بعض المفاهيم الأساسية في الرّياضيات، و في الهندسة بالخصوص كحساب المثلّثات مثلا. ويبقى الدّرس مفتوحا كذلك للأطفال من المدرسة الإبتدائية، و خاصّة الأبواب الأولى منه.
هذا الدّرس يرمي إلى إعطاء نظرة شاملة حول علم الفلك في ظلّ الإكتشافات العلمية الحديثة، والّتي واجب معرفتها على كلّ من أراد فهم الكون الّذي نعيش فيه.

2. الهدف من دراسة علم الفلك :موضوع علم الفلك و فروعه
علم الفلك هو أقدم العلوم على الإطلاق. إذ نتج عن الدّافع الطّبيعي للإنسان لإستكشاف المحيط الّذي يعيش فيه، و محاولته فهم الظّواهر اليومية الّتي قد تبدو لنا بديهية في وقتنا الحالي، كالحركة الظّاهرية للشّمس في السّماء أو إختلاف الفصول مثلا.
و رغم أنّ هذه الحاجة تطوّرت خلال القرون الماضية من محاولة فهم المحيط المباشر (الأرض) إلى محاولة فهم ما بعد ذلك (المجموعة الشّمسية، المجرّة...)، فإنّ علم الفلك (و باقي العلوم عموما) يبقى يهدف من خلاله دارسه و الباحث فيه إلى تلبية رغبته البسيطة في فهم ما حوله حتّى يمكنه بعد ذلك تحسين ظروف معيشته. ففهم حركة القمر حول الأرض و حركة هذه الأخيرة حول الشّمس مكّننا من وضع الرّزنامات الدّقيقة الّتي تنظّم حياتنا. كذلك، فإنّ معرفة مواقع النّجوم في السّماء تمكّن المسافر و البحّار من إيجاد طريقيهما.
و موضوع علم الفلك هو "السّماء"، أي كلّ ما يوجد خارج الأرض من أجرام سماوية كالكواكب و الأقمار إلخ. و بطبيعة الحال يدرس علم الفلك الأرض أيضا ولكن بنظرة إجمالية، على عكس الجيولوجيا مثلا. فعلماء الفلك يدرسون حركة الأرض حول نفسها و دورانها حول الشّمس و تفاعلها مع الكواكب الأخرى.

وتعدّدت فروع علم الفلك بتطوّر أساليب البحث و تقنيات الرّصد و تقدّم العلوم الأخرى. إذ أنّ علم الفلك علم شامل، و الباحث فيه عليه إتقان الرّياضيات و الفيزياء بالخصوص، ولكن كذلك الكيمياء و حتّى البيولوجيا (لمن يريد دراسة إمكانية الحياة على سطح الكواكب الأخرى مثلا). و الرّاصد عليه إتقان تقنيات عديدة كالإلكترونيك و الحاسوب مثلا. و من أهمّ فروع علم الفلك الحديث نذكر:
1. قياس مواقع النّجوم (Astrometry): و هو الفرع الّذي يرمي إلى قياس مواقع النّجوم في السّماء بدقّة كافية و رصد تحرّكاتها.
2. الميكانيك السّماوية (Celestial Mechanics): يهدف إلى رصد حركة الكواكب و الأقمار في مجموعتنا الشّمسية و التنبّؤ بهذه الحركة في ظلّ قانون الجاذبية. و هو علم دقيق جدّا، إذ يمكن من خلاله حساب زمن خسوف القمر بدقّة، و هذا عشرات السّنين قبل حدوثه .
3. الفيزياء الفلكية (Astrophysics):والّتي تضم العديد من الشّعب كدراسة طبيعة الكواكب و فيزياء النّجوم و دراسة تكوين الأبنية الكبرى و دراسة محيط ما بين النّجوم...
4. فيزياء الكون (Cosmology): و هو يدرس الكون بمجمله و بجميع مكوّناته بنظرة شاملة، و يهدف إلى دراسة تكوينه و مستقبله، وهو علم يشهد حاليا إقبالا و إهتماما كبيرين من طرف الفلكيين.

و الباحث في علم الفلك الحديث عليه أن يختصّ في واحدٍ من هذه الفروع إختصاصا عميقا، إذ أنّ كلّ فرع يكاد يشكّل لوحده علما منفردا ! ولكن مع هذا فإنّ عالم الفلك عليه معرفة المفاهيم الأساسية في جميع الفروع الأخرى الّتي لا تزال مرتبطة على كلّ حال. و سنبدأ التطلّع على
هذه المفاهيم إبتداءً من الباب القادم.
مبدأ التكافؤ في النسبية العامة
نميز في الفيزياء بين مراجع عطالية (جمل مرجعية عطالية inertial reference systems) ومراجع غير عطالية non-inertial، حيث يمكن لأي جسم أن يحافظ على حركته المنتظمة في الجمل العطالية ما لم يخضع لقوة ما أو يتأثر بجسم آخر ضمن نفس الجملة، في حين تكتسب الأجسام في الجمل غير العطالية تسارعا ناجما عن حركة الجملة نفسها وتسارعها وليس نتيجة تأثير جسم داخلي ضمن الجملة. تتم تفسير مقاومة هذا التسارع بقوى افتراضية ندعوها قوى العطالة inertial forces في حالة الحركة المتقيمة للجمل المرجعية أو قوى العطالة النابذة في حالة الحركة الدورانية rotational movement للجمل المرجعية. هذه القوى تعتبر قوى افتراضية غير فيزيائية في الميكانيك الكلاسيكي النيوتني لكن في النسبية العامة ليس هناك مجالا لمثل هذا التمييز حسب مبدأ التكافؤ (اقرأ تجربة المصعدين الفكرية في صفحة مبدأ التكافؤ). وليس هناك من قوة ثقالية ضمن الاطار المرجعي في حالة السقوط الحر (الحركة المتسارعة) عدا القوى المدية للثقالة التي تشوه الأجسام دون التأثير على حركتها وسرعتها (دون تسارع). وحتى محاولات الكشف عن الأموج الثقالية تعتمد على هذه القوى المدية(tidal forces). و قد استند اينشتاين في الواقع على حقيقة معروفة منذ غاليليو ألا وهي تماثل الكتلتين الثقالية والعطالية للأجسام، مما يؤكد ان التسارع الحركي والثقالة(gravity)هي مظاهر لأمر واحد. ويفترض أنه لا وجود لأي تجربة يمكن ان تميز بين حقل ثقالي-جاذبية-و تسارع منتظم. وسرعان ما وسع اينشتاين مبدأ التكافؤ في نظريته ليشمل مفهوما اضافيا هو استحالة تحديد حالة الحركة لجملة مرجعية غير متسارعة عن طريق أي قياس فيزيائي. وعلى هذا فلا يمكن ايجاد أي تغير في الثوابت الفيزيائية الأساسية مثل كتلة الراحة أو الشحن الكهربائية للجسيمات الأولية، والا فان اي تغير في هذه الثوابت يطعن في صحة النسبية العامة. يذكر ان النظرية النسبية هي أحد أهم النظريات في العلم الحديث.
النتائج الهندسية
بالرغم من الاهتمام الأساسي في الهندسة كان منصبا لفترة طويلة على القواعد في الفضاء الاقليدي فيما يعرف بالهندسة الاقليدية فقد قام عدد من علماء الرياضيات بصياغة هندسات لااقليدية مثل لوباتشوفسكي وريمان وغاوس وغيرهم. لكن التصور الأساسي للفضاء بقي اقليديا طيلة قرون لتوافقه مع معظم النظريات الفيزيئية بخاصة ميكانيك نيوتن. لكن ظهور النسبية العامة فتح الباب للاعتقاد حول لااقليدية الزمكان(الزمان + المكان = الزمكان) وقد أكدت الكثير من التجارب هذه الحقيقة.
الأمواج الثقالية
يعتبر التنبؤ بالأمواج الثقالية إحدى أهم النتائج والبراهين على النسبية العامة. ولتبسيط الموضوع يمكننا تشبيه القوة الثقالية بالقوة الكهربائية : حيث تقابل الكتلة Mass في الثقالة الشحنة charge في القوة الكهربائية. وأي اضطراب في هذه الشحنات يحدث في الجوار أمواجا كهرمغناطيسية تنتشر بسرعة تساوي سرعة الضوء، بشكل مماثل يحدث اضطراب الأجسام ذات الكتل الضخمة نشوء أمواج تنتشر في حقل الثقالة المحيط بها, لكن أمواج الثقالة خلافا للأمواج الكهرمغناطيسية هي اضطراب يطرأ على الفضاء نفسه (نتذكر أن الثقالة في النسبية هي تعبير عن تشوه الزمكان نفسه) وهكذا تبدو أمواج الثقالة كاضطراب زمكاني ينتشر بعيدا عن موقع الاضطراب
تكافؤ المادة والطاقة
من ويكيبيديا، الموسوعة الحرة
المراجعة الحالية (غير مراجعة)
اذهب إلى: تصفح, البحث
مجسم لمعادلة أينشتاين الشهيرة في برلين
ط = ك.س² (بالإنجليزية : E=mc²) أي إن حاصل ضرب الكتلة في مربع سرعة الضوء يساوي طاقته
وهي أشهر المعادلات الفيزيائية في القرن العشرين، وتمثل هذه المعادلة إحدى نتائج نظرية النسبية الخاصة لأينشتاين، وقد أدت تلك المعادلة فيما بعد إلى اكتشاف الطاقة النووية، واستغلت أول ما استغلت في صناعة القنبلة الذرية التي ألقيت على مدينة هيروشيما وأخرى على ناجازاكي باليابان خلال الحرب العالمية الثانية وانتهت الحرب بسببهما. فكثير من الناس كان لا يصدقون بأن لنواة العناصر طاقة كبيرة بهذا القدر. ولو فكرنا قليلا بأن نضرب كتلة أي جسم أمامنا في سرعة الضوء لوجدنا طاقة هائلة، وسوف نتعجب عما يملكه أي جسم من طاقة حيث أن كتلة جسم صغير تنتج طاقة كبيرة. وقد بينت التجارب العلمية أن كتلة نواة الذرات تقل عن كتلة مجموع مكوناتها (أي مجموع كتل البروتونات والنيوترونات) والفرق في هذه الكتل يتحول إلى طاقة وهذه الطاقة هي التي تسمح بترابط مكونات نواة الذرة. وقد استطاع العلماء تحرير هذه الطاقة عن طريق شطر أنوية الذرات. وتستغل الطاقة النووية في عصرنا الحاضر في إنتاج الطاقة الكهربائية في المفاعلات النووية والتي تعمل اليورانيوم كوقود ذري. ويعتبر اليورانيوم-235 هو الوقود الذري، إلا أن وجوده في خام اليورانيوم قليل (يوجد في الخام بنسبة 7و0 %). ولكي يصلح لتشغيل المفاعلات النووية لا بد من تخصيبه إلى درجة 5و3 %.وخلال التفاعل النووي في المفاعل تنقسم نواة اليورانيوم-235 وتنطلق قوى الربط على هيئة حرارة نستغلها في تسخين الماء وتكوين بحار الماء ذو ضغط عال (نحو 400 ضغط جوي) ويدير هذا البخار توربين الذي يدير بدوره المولد الكهربائي، وبذلك نحصل على الطاقة الكهربية من الكاقة النووية. وهناك نوع آخر من التفاعلات النووية أكثر إنتاجية للطاقة وهي تفاعل الاندماج النووي وفيها يلتحم 4 ذرات للهيدروجين ليكونوا نواة ذرة الهيليوم وتنطلق فرق قوة الرباط على هيئة طاقة حرارية. وخلال تلك العملية يتحول اثنان من البروتونات إلى نيوترونين فتصبح نواة الهيليوم بها 2 بروتونات و 2 نيوترونات، وهي أشد الأنوية جميعا في صلابتها وتماسكها.
مثال عملي
تنص معادلة اينشتاين على: E = m. c²
حيث: E الطاقة جول m الكتلة كيلوجرام c سرعة الضوء في الفراغ متر/ثانية
إذا حسبنا تلك المعادلة ل 1 جرام من المادة، وبمعرفة أن سرعة الضوء 299,792,458 متر/ثانية نحصل على النتيجة : ≈9.0 × 1013 جول/جرام وهذه الطاقة تعادل
90 مليون مليون جول 24.9 مليون كيلوات-ساعة 21.5 مليون مليون سعر حراري 21.5 ألف طن TNT
-في النصف الثاني من القرن 19 قدم جيمس كلارك ماكسويل (1831 - 1879) نظرية متكاملة عن الظواهر الكهرطيسية. لم تحوي هذه النظرية على متغيرات ميكانيكية كما في قانون التحريض الكهرطيسي:
كان من الواضح أنه لا يأخذ بعين الاعتبار أية فكرة عن جسيمات مرافقة لهذه الأمواج وقد بيّن ماكسويل في هذه النظرية أن الضوء عبارة عن أمواج كهرطيسية. جميع الظواهر الموجية المعروفة آنذاك كانت عبارة عن تموج لوسط معين (الأمواج على سطح الماء, الأمواج الصوتية...). لذلك اعتقد الفيزيائيون أن الضوء يجب أن يكون تموج لوسط ما أطلقوا عليه اسم الأثير, وكان على هذا الأثير أن يملأ الكون بأكمله ليؤمن توصيل ضوء النجوم البعيدة, وأن يكون سهل الاجتياز (و إلا لكبح حركة الأرض حول الشمس), وعلى الضوء أن ينتشر به بسرعة c.
حاول العديد من الفيزيائيين ومن ضمنهم ماكسويل وضع نموذج ميكانيكي للأثير لكن النجاح لم يحالفهم في ذلك ،و مع الوقت ساد الاعتقاد بعدم قدرة الميكانيكا (علم حركة الأجسام) على تفسير الظواهر الكهرطيسية. - وبذلك تكون جملة المقارنة الغاليلية المرتبطة بالأثير متميزة عن باقي جمل المقارنة الغاليلية. وكان بالإمكان إذا استنتاج سرعة كل جملة مقارنة غاليلية بالنسبة إلى الأثير عن طريق القيام بتجارب انتشار الضوء، وما كان ان طـُبق آنذاك مبدأ النسبية الميكانيكي على انتشار الضوء. - في الواقع عندما تتحرك الأرض في اتجاه ما بالنسبة للأثير وبسرعة v، ونرسل من الأرض إشارة ضوئية في نفس الاتجاه فستكون سرعة الإشارة بالنسبة للأثير c وبالنسبة للأرض c-v. أما إذا أ ُُُُرسلت الإشارة بالاتجاه المعاكس فستكون سرعتها بالنسبة للأرض c+v. ولما كانت الأرض تتحرك حول الشمس بسرعة 30 كيلومتر في الثانية على مسار دائري تقريبا، توقع الفيزيائيون بأن الأرض تتحرك بسرعة مماثلة تقريبا بالنسبة للأثير. -في نهاية القرن 19 أجريت تجارب عديدة لقياس التغيرات في سرعة الضوء بالنسبة للأرض والمعتقد أن تسببها حركة الأرض بالنسبة للأثير. لكن جميع النتائج جاءت سلبية حيث انتشر الضوء في جميع الاتجاهات بالنسبة للأرض بسرعة متساوية c. وكانت هذه النتيجة هي جوهر تجربة مايكلسون ومورلي. -تم إثبات هذه النتيجة في يومنا هذا عن طريق عمل نظام التوقيت الدولي الذي يعتمد على الساعة الذرية وكذلك عن طريق التجارب التي أجريت في الفيزياء النووية وفيزياء الجسيمات الأولية. تدل سرعة الضوء الثابتة على تعذر التميز بين جمل المقارنة الغاليلية حتى باستخدام تجارب انتشار الضوء. ظهرت عدة فرضيات في نهاية القرن 19 تحاول تفسير النتائج التي توصلت إليها التجارب حول ثبات سرعة انتشار الضوء لكن جميعها عجزت عن تعميق فهمنا لهذه الحقيقة. -وضع اينشتاين عام 1905 المبدأين التاليين ليكونا أساس النظرية النسبية الخاصة والتي دعيت بالخاصة لأنها خاصة بجمل المقارنة الغاليلية: مبدأ النسبية و مبدأ ثبات سرعة الضوء.
فرضيات النسبية الخاصة
مبدأ النسبية Relativity Principle: لا توجد خصوصية أو اختلافات في القوانين الطبيعية بين مختلف الجمل العطالية. فكل ملاحظ في أي جملة عطالية يجب أن يكون على توافق مع مراقب في جملة عطالية أخرى بشأن وصف الواقع الفيزيائي. (تأخذ قوانين الفيزياء التعبير الرياضي نفسه في جميع جمل المقارنة الخارجية الغاليلية، أي أن جميع جمل المقارنة الغاليلية متساوية فيزيائيا.) ولا توجد جملة مقارنة مطلقة (أي لايوجد نظام في حالة الثبات المطلق). لذا لا يمكن عن طريق أية تجربة فيزيائية (ميكانيكية, بصرية...) تجرى ضمن جملة المقارنة تحديد إذا ما كانت هذه الجملة ساكنة بالنسبة لجملة أخرى أو تتحرك بحركة مستقيمة منتظمة. وتم توسيع هذا المبدأ ليشمل كل الأحداث الفيزيائية.
ثبات سرعة الضوء : سرعة الضوء بالنسبة لجميع المراقبين العطاليين inertial observers واحدة (س) وفي جميع الاتجاهات ولا تعتمد على سرعة الجسم المصدر للضوء. إن سرعة انتشار الضوء في الفراغ هي السرعة الحدية العظمى ولها القيمة نفسها في جميع جمل المقارنة الغاليلية. بغض النظر عن سرعة المنبع وجهة انتشار الضوء وحركة كل من المنبع والمراقب.
عند جمع هذين الفرضين يمكننا الاستنتاج أن الضوء لا يحتاج إلى وسط (أثير) ينتقل فيه كما تنص نظرية نيوتن، فهو لا يرتبط بجملة مرجعية (نظام مرجعي) reference system. -و بما أن هذه النظرية تهمل تأثيرات الجاذبية فيجب ان ننتبه إلى تطبيقها فقط عندما تكون تاثيرات الثقل مهملة وضئيلة وإلا حصلنا على نتائج خاطئة.
نتائج النظرية
الفاصل الزمني بين حدثين متغير من مراقب إلى آخر لكنه يعتمد على السرع النسبية للجمل المرجعية للمراقبين.
نسبية التزامن : يمكن لحدثين متزامنين، يحدثان في نفس الوقت في مكانين منفصلين ضمن جملة مرجعية، أن يكونا غير متزامنين متعاقبين بالنسبة لمراقب في جملة مرجعية أخرى.
نسبية القياس : يمكن لعملية القياس التي يجريها مراقبين في جملتين مرجعيتين reference system مختلفتين أن تعطي نتائج وقياسات مختلفة لنفس الشئ المقاس.
نسبية الزمن ومفارقة التوأمين twins paradox : من نتائج النظرية النسبية الخاصة أن الزمن ليس مطلقا وإنما يعتريه الانكماش باقتراب سرعة مكانه من سرعة الضوء. وبناء على ذلك على سبيل المثال :إذا سافر أحد توأمين في مركبة فضائية بسرعة تقارب سرعة الضوء، فسيكتشف بعد عودته للأرض بعد خمس سنوات بحسب توقيت ساعته، مرور خمسين عاما على توقيت الأرض. أي أنه سيجد أخاه قد كبر خمسين عاما، في حين لم يزد عمره هو سوى خمس سنين... هذه الظاهرة العجيبة هي نتيجة لتباطؤ الزمن بتزايد سرعة مركبة الفضاء (الجملة المرجعية) التي يتم القياس فيها.
رفضت النسبية فكرة المرجع المطلق absolute reference التي تتوافق مع فكرة مكان متجانس مملوء بمادة تدعي الأثير ينتقل عبرها موجات الضوء، لقد نسفت النسبية هذه الفكرة من جذورها استنادا إلى تجربة ميكلسون ومورلي التي بينت ثبات سرعة الضوء وقامت باستبدالها بمبدأ النسبية الذي ينص على ثبات قوانين الفيزياء (و ليس الفضاء) بالنسبة لكافة الجمل ذات السرع الثابتة (الأنظمة العطالية inertial systems). يمكن ببساطة التحويل بين الأنظمة المرجعية المتحركة بالنسبة لبعضها عن طريق مجموعة قوانين تدعى : تحويلات لورينتز. -و كما قامت النسبية بتوحيد الزمان مع المكان في فضاء واحد رباعي الأبعاد، قامت بتبيان العلاقة بين الكتلة Mass, والعزم Momentum, والطاقة Energy على انها ظواهر لشئ واحد، وفتحت الباب نحو تحويل هذه الظواهر إلى بعضها البعض وعوضا عن الحديث عن انحفاظ المادة Matter أو الطاقة أو العزم يمكننا الحديث عن انحفاظ مجموع هذه القيم ضمن الجمل المعزولة
ازمان في النسبية الخاصة
مقال تفصيلي :نسبية التزامن
إذا افترضنا أن الضوء الصادر عن حدث event معين في نقطة ما من الفضاء ينتشر بسرعته الثابتة س فهذا يعني أنه يغطي كرات تحيط بهذا الحدث وهذه الكرات تتوسع بزيادة قطرها مع الزمن حسب سرعة الضوء المنتشر.
لصعوبة تمثيل فضاء رباعي الأبعاد four-dimensional space سوف نضطر لحذف أحد الأبعاد المكانية مكتفين ببعديين مكانيين وبعد زمني شاقولي، فتأخذ كرات الضوء المتوسعة شكل دوائر متوسعة مع تزايد الزمن أي مع الارتفاع على المحور الشاقولي وبهذا يمثل انتشار الضوء المخروط المتشكل من الدوائر المتوسعة.
في الحقيقة، يمكن تخيل مخروطي ضوء لكل حدث : مخروط متجه نحو الأعلى يدعى مخروط الضوء المستقبلي Future Light Cone ويمثل مجموعة النقاط التي يمكن وصول الضوء من الحدث المعني اليها (هذه النقاط في الفضاء الرباعي الأبعاد تمثلها 4 أرقام هي الاحداثيات المكانية الثلاثية والاحداثي الزماني فهي تحدد النقطة الفراغية مع زمن وصول الضوء عليها...) أما خارج المخروط فهي النقاط التي لا يمكن وصول الضوء اليها (هذه النقاط تمثل نقاطا فراغية مع زمن يستحيل وصول الضوء خلاله لأنه يستلزم انتشار للضوء بسرعة تفوق س وهو أمر مستحيل حسب النسبية).
المخروط المتجه نحو الأسفل يدعى مخروط الضوء الماضي Past Light cone ويمثل مجموعة الحوادث التي يمكن أن يصل منها شعاع ضوئي إلى الحدث (في هذه النقطة واللحظة الزمنية).
التزامن والسببية.
في الشكل :لنفترض وجود حدثين أ وب في نفس الجملة المرجعية reference system وفي نفس المكان ضمن هذه الجملة لكن بفاصل زمني (يشتركان بالموقع المكاني ويختلفان بالاحداثي الزمني time coordinate) كما نفترض وجود حدثين ب وج ضمن جملة مرجعية واحدة بحيث يحدثان آنيا (أي في وقت واحد) لكنهما يقعان في موقعين مختلفين. (يشتركان بالاحداثي الزمني ويختلفان بالاحداثيات المكانية).
في الجملة المرجعية الأولى يمكن ل أ أن يسبق ب فعندئذ يكون أ سابقا ل ب في كل الجمل المرجعية ومن الممكن للمادة أن تنتقل من أ إلى ب بحيث نعتبر أ سببا وب نتيجة فتكون هناك علاقة سببية بين أ وب. في الواقع لا وجود لأي جملة مرجعية تقلب هذا الترتيب السببي.لكن هذه الحالة لا تنطبق في حالة الحثين أ وج (ج يقع خارج المخروط الضوئي ل أ كما هو واضح) حيث توجد جمل مرجعية ترى حدوث أ قبل ج وجمل مرجعية ترى حدوث ج قبل أ. لكن هذا بكل الأحوال لا يكسر قانون السببية لأنه يستحيل نقل المعلومات بين أو ج أو بين ج وأ لأن هذا يستدعي سرعة أكبر من سرعة الضوء. بكلام آخر يمكن لبعض الجمل المرجعية أن ترى الأحداث بترتيب مختلف لكن لا يمكن لهذه الجمل أن تتواصل فيما بنها لأنها تحتاج إشارات أسرع من الضوء، وهكذا يحفظ مبدأ ثبات سرعة الضوء في النسبية قانون السببية ويحمينا من مفارقات العودة في الزمن.
هندسة الزمكان في النسبية الخاصة
الفضاء الزمكاني في نظرية النسبية الخاصة هو فضاء منكوفسكي رباعي الأبعاد، وهو فضاء يشابه الفضاء الأقليدي الثلاثي الأبعاد المعتمد في الميكانيك النيوتني من حيث سكونيته، فالخاصية الحركية ستدخلها فيما بعد نظرية النسبية العامة لتحول الزمكان من فضاء رباعي الأبعاد سكوني إلى فضاء رباعي الأبعاد حركي.بالرغم من البعد الرابع فإن مشابهته للفضاء الأقليدي من الناحية السكونية تجعله سهل التعامل فمعظم قواعد الفضاء الإقليدي تطبق هنا ذاتها بعد إضافة الحد الموافق للإحداثي الرابع (الزمني).يعطى التفاضل للمسافة (ds) في فضاء ثلاثي الأبعاد بالعلاقة التالية :
حيث (dx1,dx2,dx3) هي تفاضلات الإحداثيات الثلاثة أو الأبعاد الفراغية الثلاثة. أما في الفضاء الزمكاني للننسبية الخاصة قنضيف احداثي رابع زماني بواحدة تساوي سرعة الضوء c فتكون المعادلة التفاضلية للأبعاد الأربعة :
في العديد من الحالات، يكون من الأنسب معاملة الاحداثي الزمني كعدد تخيلي (مثلا لتبسيط المعادلة) وفي هذه الحالة يستبدل t في المعادلة السابقة ب i.t'، وتصبح المعادلة :
في حالات أخرى نقوم باختزال الأبعاد المكانية الثلاثة إلى اثنين ونتعامل عندئذ مع فضاء ثلاثي الأبعاد : بعدبن مكانيين وآخر زماني.
يمكننا أن نلاحظ الخط الجيوديسي الصفري على المخروط الثنائي لأي حدث في الصورة التالية :
و يمكن تعريفه بالمعادلة التالية :
أو:
وهي معادلة دائرة ذات قطر r=c*dt. لو مددنا ذلك الكلام لفضاء كامل ذو ثلاث أبعاد مكانية وواحد زماني ،فإن الجيوديسي الصفري عبارة عن دوائر متمركزة مستمرة ذات أقطار متزايدة
تساوي المسافة التي يقطعها الضوء من الحدث = c*(+ أو -)الزمن.
المخروط الثنائي الصفري هو ما يمثل "خط الضوء" أو مسار الضوء الصادر عن تلك النقطة أو ما ندعوه بالحدث ضمن الفضاء الرباعي الأبعاد، وبما أن الضوء صاحب أكبر سرعة في الكون حسب النظرية النسبية فإنه لا وجود لمسارات تنطلق من هذه النقطة (الحدث) وتخرج عن نطاق هذا المخروط الثنائي (ببساطة لأن لا شيء أسرع من الضوء). ندعو المخروط العلوي : مخروط الضوء المستقبلي وهو يشمل الأحداث المستقبلية التي يمكن أن تتلقى إشارة من الحدث المعني. أما المخروط السفلي فيدعى مخروط الضوء الماضي ويشمل الأحداث الماضية التي يمكن لها بعث إشارة إلى هذا العنصر. كل ما هو خارج هذين المخروطين لا يمكن له التواصل مع هذا الحدث لا كماضي ولا كمستقبل.

Aucun commentaire:

Enregistrer un commentaire